「表面物理」「表面物理特論」

東京大学工学部物理工学 大学院工学系研究科物理工学専攻

長谷川幸雄 教授 物性研究所 (ISSP) hasegawa@issp.u-tokyo.ac.jp

福谷克之 教授 生産技術研究所 (IIS) fukutani@iis.u-tokyo.ac.jp

Zoomの 設定

私の画像の右上設定ボタン→ビデオの固定

こちらの画面を表示

画面上でカーソル移動 左上「共有コンテンツに切り替えます」 共有画面(=講義資料)を表示

講義資料

ITC-LMSでダウンロードし, 印刷して準備のこと

(物工教務室でも配布)

ところどころ空欄があるため, 空欄に記入しながら聴講のこと

評価方法:レポート提出による

講義の項目

前半(福谷)

- ・表面科学の基礎とイントロダクション
- ・表面のマクロな性質:表面エネルギー,仕事関数
- ・表面における原子構造:理想表面,緩和と再構成
- ・表面構造を調べる実験方法

電子線回折、走査トンネル顕微鏡

・表面の振動:原子間力の起源と表面局在フォノン

後半(長谷川)

- ・表面電子状態:ショックレー状態, 鏡像状態, タム状態
- ・表面再構成の起源
- ・電子の局所状態密度:表面バンドのナローイング
- 吸着子の状態密度:
- ・表面での原子の運動

固体表面とは

表面:物質内部(バルク)に対する言葉

表面の特徴

A. <u>固体(結晶)の表面</u>

1. 結晶の持つ3次元的な対称性の変化

表面垂直方向の並進対称性が消失

表面平行方向の対称性が変化する場合もあり

→電子状態の縮退が解ける

/新しい電子状態の出現

2. 次元性の低下:

電子間の相関の増強

固体表面とは

表面の特徴

B. 異なる相の界面:

- ・固相一気相, 固相一液相
 物質が光や粒子と相互作用する場
 外界と物質・エネルギーを交換する場
- ・原子の運動の自由度が高い

·電子的視点

固体:空間的に広がった状態=

原子・分子:空間的に局在した状態=

→機能発現の"場"

電子デバイス,化学反応,結晶成長(新たな物質合成)

→電子(スピン), エネルギー, 物質 の制御

表面研究における解析手法

「表面・界面の科学」に関わる歴史

1839年	W. Grove
1887年	H.R. Hertz
1897年	J.J. Thomson
1905年	A. Einstein
1909年頃	O.W. Richardson
1910年頃	F. Haber
1918年頃	I. Langmuir
1926年	L.V.de Broglie
1927年	C.J. Davisson, G.P. Thomson, S. Kikuchi
1930年頃	E. Ruska
1947年	Brattain, Bardeen, Shockley
1952年	E.W. Muller
1967年頃	K. Siegbahn
1980年	K. von Klitzing
1981年	B. Binnig, H. Rohrer
2007年	G. Ertl
2016年	Thouless, Kosterlitz, Haldane

H.R. Hertz の実験

J.J. Thomson の実験 電子の発見

電子の粒子性

Davisson-Germer の実験

シリコン:半導体

シリコンウェハー

- MOS transistor
- Photo/ particle detector
- Solar cell

シリコンの表面:多彩な超周期構造

7倍の超周期構造の発見

J. J. Lander & J. Morrison, J. Chem. Phys. 37 (1962) 729

"表面は 中とは違う" 表面では平行方向の 周期性が変化する場合がある

(観測技術の進歩)

熱電子放出

電界放出

高温:フェルミ準位より上に

強電界:ポテンシャルの曲り

電界イオン顕微鏡(FIM)

ヘリウムが表面でイオン化・針から反発 T.T. Tsong, Prog. Surf. Sci. 10, 165 (1980) Figs. 3, 4

FIM像 針先の原子の観察に成功

顕微鏡の原理

荷電粒子に対するレンズ効果

物の性質→電子の状態に由来 $H = \frac{1}{2m}(\vec{p} - e\vec{A})^2 + V(\vec{r})$ 光電子分光:電子状態の測定 電磁場のもとで電子の遷移 e 電子放出 $\propto \left| \left\langle \boldsymbol{\psi}_{f} \right| \vec{A} \cdot \vec{p} \left| \boldsymbol{\psi}_{i} \right\rangle \right|^{2}$ 难 密 hv ✓ 実験: 電子のエネルギーを測定 E_{Vac} 分光器:特定のエネルギーの電子が通過 E_f hł 半球型 価電子 荷電粒子を円運動 内殻準位

J.-F. Ge et al., Nat Mater 14, 285 (2015)

トポロジカル絶縁体

バルクは絶縁体:対称性の要請から表面は金属

走査トンネル顕微鏡

Scanning Tunneling Microscope (STM)

H. Lüth, Surfaces and Interfaces of Solid Materials (Springer, Berlin, 2001), Fig. VI.1

STM像の例

Si(001)

·超周期構造

Pt(111)-NO

・吸着したNO分子が2倍周期で 配列した様子が見える

D.M. Eigler et al., Nature 344, 524 (1990), Fig. 1

M.F. Crommie et al., Science 262, 218 (1993), Fig. 2

走査トンネル分光

Scanning Tunneling Spectroscopy (STS)

電流一電圧(I-V)特性

原子分解能で局所的な

電子状態 振動状態 磁気状態 の測定が可能

e.g. 電荷密度波, 超伝導ギャップ 単分子の分子軌道・振動状態 磁性

フェルミ面の観測

FT

L. Petersen et al., Phys. Rev. B 57, R6858 (1998) Fig. 3

M. Bode et al., Nature 447, 190 (2007), Fig. 2

表面·界面磁性

 $H = -J \vec{S}_1 \cdot \vec{S}_2$

表面特有の電子状態

スピンの大きさ、スピン間相互作用、スピンの向き

(界面相互作用の競合)

表面・界面特有の磁気構造の出現

U. Gradmann, J. Magn. Magn. Mater. 100, 481 (1991).

ー酸化炭素の酸化反応 $CO+\frac{1}{2}O_2 \rightarrow CO_2$ 発熱反応であっても 活性化障壁 大 そのままでは反応しない

Pt 表面で は

$$\operatorname{CO} + \frac{1}{2}\operatorname{O}_2 + \operatorname{Pt} \to \operatorname{CO}_2 + \operatorname{Pt}$$

 $E_a' < E_a$

化学過程:原子の運動

ポテンシャルとダイナミクス

他の自由度との相関、トンネル効果等

物理的観点から解明

G. Ertl, Surf. Sci. 299, 742 (1994).

反応における振動現象

・複数の表面構造・粒子の拡散・系の非線形性

Surf. Sci. 134, L517 (1983) Phys.Rev.Lett. 65, 3013 (1990)

Lotka-Volterra Model

$$\frac{dx}{dt} = c_1 x - c_2 xy$$
$$\frac{dy}{dt} = c_3 xy - c_4 y$$

うさぎ(被食者) vs. 山猫(捕食者)

(cf. Nobel lecture by G. Ertl)

https://www.nobelprize.org/prizes/chemistry/2007/ertl/lecture/

対称性,次元性の低下

•表面特有の構造,電子状態

異なる相間の界面

•原子運動の自由度

•電子,エネルギー,物質の移動・制御